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Abstract-The dispersion equation governing small-amplitude longitudinal vibrations. in their
lowest mode. of an elastic cylinder upon which there are imposed large steady axial and normal
tractions. is given in an approximate form valid for wavelengths large compared to the cylinder
radius. The displacement and stress fields are also obtained. Three cases are considered in which
the isotropic hyperelastic material of the cylinder is (i) incompressible. (iil compressible and free
from internal constraint. (iii) compressible but subject to Heirs constraint. The dispersion equation
is illustrated graphically for certain specific strain-energy density functions. including those for a
generalizcd Bl.llz-Ko material. a Mooney-Rivlin material and a model for biological tissue.

l. INTRODUCTION

In the course of their classical investigations into the vibrations of an clastic cylinder of
circular cross-section Pochhammer (1876) and later, but independently, Chree (1886) [sec
.tlso Love (1944»), obtained the approximate dispersion equation

(I)

governing the lowest mode of longitudinal vibration. Here w, k are the angular frequency
.lOd wave-number, and E, (1, p, a the Young's modulus, Poisson's ratio, density and radius
of the cylinder.

Our aim in this paper is to employ the methods of modern non-linear elasticity theory
in order to derive the corresponding dispersion relation for small-amplitude waves in a
cylinder subjected to large steady axial and normal tractions. The result may find application
in the stability theory of cylinders under stress and in the propagation of ultrasonic waves
along stressed bars. It turns out that for any homogeneous isotropic hyperelastic material
it is possible to define quantities E·, (1. in terms of the strain-energy density function and
the imposed tractions so that the derived dispersion equation is of broadly similar, but not
identical, form to (I). Further, these quantities E·, (1. are simply related to the behaviour
of the cylinder under incremental uniaxial static tension (or compression). This makes for
ease of calculation on the one hand and of experimental verification on the other. Three
cases are examined: first, the case in which the elastic material is compressible and free
from any internal constraint, secondly the case of incompressible material and finally the
very interesting situation in which the material is subject to the Bell constraint [see Bcli
(1983»). The analysis in the last case may have important implications for the behaviour of
the cylinder material as it approaches the plastic regime. Corresponding to these three cases,
the results are illustrated for material obeying a particular generalization of the B1atz-Ko
strain-energy function whose properties are discussed by the authors elsewhere [see Willson
and Myers (1988)]. for biological tissue [see Fung (1967)] and for Mooney-Rivlin material,
where we recover a result derived by Suhubi (1965) [see also Eringen and Suhubi (1974)],
and finally for material with a strain-energy function proposed by Ericksen to account for
the experimental results of Bell (1983).

t Present address: GPT Limited. New Century Park. PO Box 53. Coventry CV3 IHJ. U.K.
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2. COMPRESSIBLE MATERIAL

For a full account of the theory of non-linear elasticity the reader is referred to Eringen
and Suhubi (1974) and for a recent survey article to Beatty ( 1987). In summary. we consider
first the undeformed state of an isotropic. homogeneous. hyperelastic body and suppose
that in this reference state the typical material particle is at a point with co-ordinates
(XI' X:. X~). When the body is subsequently deformed the co-ordinates of the site occupied
by that particle at time ( are (XI.X:, x,). where x, = x,(X I • X:. X). f). and Cartesian co­
ordinates are used throughout. From these functions x, we construct the deformation
gradient tensor F by the rule

ex,
Fi/( = 2X~' (i.K = 1.2.3).

By the polar decomposition theorem F admits a unique decomposition of the form

F= VR.

where Y is a positive symmetric tensor and R is a proper orthogonal tensor. Thus

y T = V. RRT = I.

(3)

(4)

where I is the identity and T dcnotes transpose. The eigenvalues of Yare the principal
strctches ),,, ),2 l.Ind )'J. It is usul.llly more convenient to work with ),,: rather than ;., so we
construct the Cauchy deformation tensor B and its inverse B I by the rule

B = FF I = Y=.

The invari~tntsof B arc denoted by II. I:. I., where

(5)

(6)

For ml.lterial that is compressible and free from internal construint we denote the strain­
energy per unit undeformed volume by Wand then. since the principall.lxes of stress arc
coincident with those of stretch, clearly

(7)

where the!j are the principal stresses, for all di.!> di.:. di.) without restriction. So

(8)

Then if W is regarded as a function of I" I:. I) the stress tensor r is given by

(9)

where WI = aW/iJl,.
We consider now an elastic cylinder. infinite in length and circular in cross-section.

Upon this cylinder we impose steady normal and axial tractions, denoting their values in
the deformed state by ! 1 and t.l respectively. The consequent deformation, which we call
the primary deformation, is given by

( 10)

and so from (9). (10).
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r I = 2/J I ~[}l~ WI + (W~/~ + W 3/ 3) - Jl- ~ W~/3]'

r3 = 2/J I/~[A.~WI +(W~/~+ W3/3)-A.-2W~/3]'

in which the derivatives of Ware evaluated at the point
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(II)

(12)

When the strain-energy density function W is specified. (II) determine the values of ).. Jl

for given rl' r).
We wish now to consider small-amplitude longitudinal vibrations of the cylinder and

accordingly set

(13)

where 1/ and II' depend upon r. :. t. with

(14)

The vibrations of the cylinder arc regarded as perturbations of the deformed state (10) and
in the subsequent calculation we retain only the first powers of u. \I' and their derivatives.
From (2). (5). (9). (13) we calculate the stress perturbations i". The non-vanishing iii
comprise the components i". i llil • i,: .lOd i" (where the sutlixes r. O. =indicate radial.
azimuthal and axial directions). We first introduce the notation. which is closely similar to
that used in Eringen and Suhubi (1974).

and then find

where

with

o = 2n~W,. <I) = 2/, 11 2WI• \1' = 21; II~W2'

II = 2/., 1/2WII • B = 2/., II2W22• C = 2/) I/~W3J'

D = 2/.,112 W21 E = 2/) 11 2WJ1 • F = 2/i 1/2WI2•

PI = AI+JI 2<1>+0+U. 2Jl2+Jl4)'I'.

{/2 = A~-JI2(1)+0+(A.2JI2-Jl4)'I'.

Ii) = A2-)·~<1>+0.

P4 = A l +i.2(1)+0+2).2Jl2'1',

Ps = J(2(<I>+JI2'1'). P6 = ).2(<I>+Jl 2'1').

P7 = A 1-JI 2<1>+0+(J(4_).2JI 2)'I'.

(15)

( 16)

(17)
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~ I = 2.u~[A + (i.: + .u:):B+ i. ~.u~C +2A.:.u:p.: + .u:)D + 2;' :.u:£+ 2(i.: + .u:)F].

~: = 2i. :Jtl-t + 2.u :().; +.u ;)8+ i. :.ubC+ .u 4(3i.: + Jl:)D + Jl:(i.: + Jl:)£ + (i.: + 3Jl:)F].

~) = 2i.l-t+4.u~B+Jl~C+4.ubD+2.u~£+4Jl:F].

Eringen and Suhubi (1974) consider only the case in which, I vanishes. In this special case
our expressions (16). (17) agree with theirs. From (II). (17) we have the important results

( 18)

In the absence of body forces. the equations of motion (to the present approximation) are

.. . . (i,,-ioo )
pll = '".r + 'r:.: + .r

(19)

where p is the density in the deformed state. so that

(20)

in which fin denotes the density in the reference state.
We consider only the case in which the traction upon the perturbed curved surface is

always normal and always of magnitude, I. so that thc boundary condition

(21 )

where the unit normal vector n = (I, o. -II:>. reduces to i" = 0, i r: = w: on r = a. So
from (16). (18), (19) it is readily seen that the boundary condition on the curved surface
r = II may be written as

i" = O. 1I:+II'r = 0 on r = a. (22)

Notice that a has been used to denote the cylinder radius after the primary deformation
has been made; in the reference state the cylinder radius is ao = .u - I a.

It is possible to solve the problem summarized by (16), (19), (22) now and in particular
to obtain the dispersion equation, exactly in terms of Bessel functions but the result is very
complicated and extremely ditlicult to survey. In many applications, however, kll is small
compared to unity and we exploit this fact now in order to obtain an approximate solution.
Accordingly we expand the radial part of the displacement in ascending powers of kr and
assume that the transverse and axial components of displacement in the lowest mode
contain only odd and even powers of r respectively. as in Pochhammer's original inves­
tigation (1876). and so set

·L

II = i. L an(kr):n> I exp[i(wt-k:)].
n_U

..,
\I' = -ii. L hn(kr):nexp[i(wt-k:)],

n_O
(23)

where i. is an arbitrary constant and the an, hn are constants whose values arc yet to be
determined. we find by equating coefficients of powers of r in (19) that
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(X-(6)a.+4(n+ l)(n+2)p,GtH 1-2(n+ l)(pz+p,)bH 1 = 0,

(X-P.)b.+2(n+l)(PJ+P6)a.+4(n+1) zp,bH1 =0, (24)

for n = 0, l, 2, ... , where

(25)

The series (23) are clearly convergent for all values of the parameters. Also from (t 6), (22),
(23)

10

L [a.+2(n+ l)bH d(ka)z. = 0,
.·0

'JC

L [«2n+ 1)/11 +/17)a.-pzb..](ka)2Jt =O.
... 0

We now write down the asymptotic developments (for small ka) of a., b., X thus

(26)

"',(' ~, 'X'

a" = L a~"J(ka)!m, b.. = L b~mJ(ka)2m, X = L XlmJ (ka) 2m. (27)
M-=O m_O m-O

The substitution of (27) into (24), (26) and the equating of coefficients of powers of (ka)
then yields sufficient equations to enable us to find all the derived coefficients in (23), (27).
Without loss of generality we may take

(28)

Then we soon lind

aIOO) = I. blO) 1 XIO) /1 2M alIO) = - ~8 ',=-!. =4- UJ
I
+p-;)'

b',O) = [UJ ,+IJ,)(Pz+P,>r- 2PH, a~1J = [(3P1+P,>r-4Pzl,
- 32P,(PI +(7) 8(PI +P,)

W) = - [«3/J 1+P7)P,+(PI+P7)Pz)f-2Pz(P2+ 2P,» (29)
16P,(P, +IJ,) ,

where

and so, with the aid of (18),

f = [(PI +(7)(PJ+P4)-2PH ,
P.(PJ +(7)

(30)

(31)

Equations (23), (27), (30) give a good approximation, valid for small values of (ka), for
the displacement field and hence the stress distribution. From eqns (25), (27), (29), (31),
we derive the approximate form of the dispersion equation
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(32)

For this result we now seek a simple interpretation and representation. Consider the elastic
body after the primary deformation has been attained. Suppose that by a small increase !::
in the axial traction, but leaving the normal traction unaltered, we impose a further, but
small, deformation so that the total deformation is now given by

where ", e are small constants. The stress increments are still governed by (16) with II = 1/',
If :::: e:. We introduce quantities E"', (1'" by the relations

(33)

We call E"', (1* respectively thc modified Young's modulus and the modified Poisson's
ratio; they will depend upon ).. II and W.

From (16), (33) wc see at once that

(34)

so from (18) and (34), eqn (32) cun be written as

pW" (1"'2
k" ::::: (E*-2(1*r)- 2 (E"'-2(1*r-rHkll)". (35)

Now E*, (1* ure qu'lOtities which may be readily .lOd directly measured in an experiment
in which the primury deformation is perturbed by a small incremental uniaxial tension. So
(35) expresses the approximate form of the dispersion rdution in terms of measurable
quantities.

When the steady tractions arc ubsent, E"', (1* become the usuul Young's modulus E
and Poisson's ratio (1 so in this cuse (35) becomes

Pow" [ (1" 'J~ki' ::::: E 1- '2 (ka)- , (ka« I), (36)

a result first given by Pochhammer (1876).
In Fig. I we compare the result (36) with the results given by the exact dispersion

relation, for (1 :::: 0.1, 0.4. The graph of (cleo), whcrc c:::: wlk and Co = (Elpo) 112, is plottcd
against (ka). We see that (36) atTords a good approximution over the range 0 ~ kll < 1/2.
ft is reasonable to assume thut (35) is a good upproximution over the same range, at least
for moderate values of r.

When there is just un axial steady traction (so that the curved surface of the cylinder
is altogether free from applied traction) the values of E"', (1'" can be found as follows.
Suppose th'lt whcn the cylindcr hus axiul strctch i., the axiul principal stretch is r(i.) and
the transverse strctch is Jl(i.). Then from (33)

. dr
E'" = I. -d'-;'

I.

* i. d/l
(1 =: - .... -

JI di..
(37)

When both axial and normal stcady tractions are present, however, it is generally necessary
to use (17), (34) and the specific form of Win ordcr to calculate the values of E*, (1* before
comparing with experimental results.
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Fig. I. Thc vclodty diagram for longitudinal vibrations in an unstrained cylinder (Poisson's ralio
rr = 0.1. 0.4). The curves show how thc stamhlrdi7.ed Vcllx:ity e/e" varies with standardi7.ed wave·
number ku. The ellrVl:S marked (36) arc derived from thc appro~imation given by eqn (36);

the companion curvcs are derived by numerical computation of the e~act dispersion equation.

In order to illustrate these results we consider a generalized BlatzKo material [see
Blatz and Ko (1962)]. for which the strain-energy density function is

(3K)

where rl. tI are constants. The general properties of this material have been examined in
detail by the authors [see Willson and Myers (1988) and Myers (1987)]. For the case of
axial steady traction alone it is found from (35), with just the leading term retained. that
the velocity of longitudinal waves in the lowest mode is given by

(39)

where C = wlk = phase velocity of wave, Co = (EolPo)'!2 = phase velocity in undeformed
state.

In Fig. 2 we show how (clco) varies with ;. for various selected values of II. We note
that for n < 1.059 (approximately) there is a range of values of A. in which (cleo) 2 is negutive
so thut very long sinusoidal waves belonging to the lowest mode cannot be propagated
along the cylinder.

When both axial and normal tractions are imposed the result corresponding to (39) is
too complicated to give here but in the special case n = 1 [this model has been used in Blatz
and Ko (1962) and Ko (1963) to describe the behaviour of polyurethane rubber] we find
the result

SAS 29:24-6
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Fig. 2. The velocity diagram for longitudinal vibrations of long wavelength in a cylinder of gener­
alized B1atzKo material untler primary axial traction. The curves show the standartlil.ed velocity

efe" ploUed against primary axial stretch). for various values of the model parameter II.

(40)

where T, = T:,/fi. TJ = T:l/fi. Figure 3 shows how (clco) varies with TJ for selected values
ofT,.

3. INCOMPRESSIBLE MATERIALS

An incompressible medium is an example of a material subject to an internal constraint
and we now consider the modifications to the preceding analysis made necessary by this
requirement. So far as possible we retain the earlier notation.

First. it is well known that for incompressible materials

where p is a Lagrange multiplier representing the scalar pressure. Here W depends upon I,
and 11 only as I J E L Since the steady normal traction T:I and axial traction T:J may be
regarded as a hydrostatic (isotropic) pressure - T: t together with an axial traction T: J - T: I

and since the hydrostatic pressure can be absorbed into the -pI term. it follows that for
incompressible materials it is sufficient to consider only the case in which there is just an
axial traction T: (= 'fJ-T:I)'

Secondly. the incompressibility condition requires directly that /J = I always. so in the
primary deformation
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Fig. 3. Thc velocily diilgram for longitudinill vibrillions of long wilvelenglh in iI cylinder of Blal7.
Ko maleriill (n"" I) under primilry normill ilnd ilxiill lraclions (in sl,md,mJi7.ed form T,. T,

respectively).

and in the perturbed deformation

u
u,+ - +w: = O.,

In place of (II)

and for the stress-perturbations [with the aid of (42)]

where fi is the scalar pressure perturbation and

PI = 21l 2$+2).21l 2'1'.

P2 = 2().2_1l2)(Jl2A-).21l4B+(1l4_).21l2)F].

P4 = 2), 2$ + 21l 4 'I' + 2()' 2 -1l2)[). 2A -1l 6 B+ (). 211 2-1l4)F],

Ps = 1l 2($+1l 2'1'). P6 = ).2($+1l 2'1').

3161

(41 )

(42)

(43)

(44)

(45)



A J. WILLo;()S and P. J. :\IVfRS

We note that

(46)

so that the boundary conditions may still be written in the form (22). The calculation of
the deformation and the dispersion equation can be made in the same way as in Section 2.
Equation (19) stands. and we augment (23). (27) with the expansions

and

p = ki I Tr.(kr)cn exp [i(wt-k:)).
,,-=11

r

Tr. = I Tr~ml(k(/)Cm.
m=O

(47)

(48)

We omit the dctails of the calculation and give only thc results. We may take an = I and
then

and then

ho = 2. rr\;11 = 111 - 211~. h'i'l = -l,

di'l = -~, XIII) = II, + I~I - /f2 - r, (49)

N.II = I _ "1/,''' (III) I
16 -.'

Vi"i If ., 1111 If
N,"1 = ~\ -,,~+_Tr. +"1>

. 3211~

_][1
1
01_ 3/f) + /f2 rll) = _l[f<ll l _ r )

g 2" S ' •
(50)

The definitions of E·. (1. can be retained but it is n.:adily seen that for incompressible
materials (1. = l always. The approximate form of the dispersion equation becomes

floW2 (E·-2r),
- (E· -r) - - - ._- (ka)-k 2 .... 8'

with

so that in terms of IV we have

E· - r = (). ~ + 2112 )«(> + 311~lfJ + 2(i. 2-/IC) 2(A + II~ B + 2/12 F),

£. - 2r = 3/1~«(> + 111(4/12 - i. 1 )lfJ + 2(i. 2 -II~) 1(...1 + II~ B+ 2/11n.

For illustrativc purposcs we rctain just thc leading tcrm in (51) so that

(51)

(52)

(53)
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(54)

so that (54) becomes

(i.IL~=I).

in agreement with Suhubi (1965) [see also Eringen and Suhubi (1974)]. This result is
illustrated in Fig. 4 for various values of {//:x.

In Fig. 5 we show how (('/e,,) varies with axial stretch ;. for a model often used [see
Fung (1967) and Beatty (1987)] to describe the behaviour of biological tissue

Ii
W = .,., (exp i'(I, - 3) - I).

-,

where Ii. yare positive constants; in this case (51), (52), (54) yield

3

(55)

o
u

u

2

o 2

Ill .. • 0.0 _______

11 / ... 0.5 ~

Ill .. • 1.0

3

Fig. -I. The velocity diagram for longitudinal vibrations of a cylinder of Mooney-Rivlin material
under prim;lry traction. The curves show the standardized velocity cleo of long waves plotted against

the primary axial stretch i. for various values of the ratio (1/7. of the model parameters.
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T- 2.0
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T- 0.5
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Fig. 5. The velocity diagram for longitudinal vibrations of a cylinder of biological tissue under
primary traclion. The curves show the standardized velocity (,/eu of long waves plolled against the

primary axial stretch ..t for various values of the model parameter ".

( c)~ l['~ ').
~. :::::.1 I. + _I.
ell

(56)

4. MATERIALS OBEYING THE BELL CONSTRAINT

In this section we consider the vibrations of a cylinder composed of elastic material
subject to the Bell constraint [sec Bell (1983) J, that is,

Then with the same assumptions as before

for all d)'I. d).~. d).\ satisfying d)'1 +d)'2+d). .1 = O. Hence

(57)

(58)

where K is a Lagrange multiplier. So, for the Bell constraint. or acquires an additional term
KV. a result given in Bell (1983) but derived by a different method. It is convenient to work
in terms of the invariantsof V.
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and then we have at once. with W = W(J~.1), of course,

(60)

where K is the Lagrange multiplier.t It plays a role analogous to the scalar pressure for
incompressible materials, and must vary in space and time in just such a way as will ensure
that 1 1 = 3 always.

With the cylinder placed under normal traction t I and axial traction t). as before. we
consider the primary deformation (10) so that

(61 )

and

(62)

since in the primary deformation

v = diag {It. It. l}.

Throughout this section. sullixes attached to W indicate partial differentiation with respect
to 1!.J,.

Now consider the perturbed state produced by the longitudinal vibration of the cylin­
der. the total deformation being given by (13), (14). It is easy to show that now

[

II( I + II,)

v= 0

J

where

o
II( I + u/,)

o
tJ ]o .

l( I + II':)

(63)

Also the requirement 1 1 = 3 yields

u
11,+ - +Lw: = O.,

where L = ;./11.
A short calculation now reveals that the perturbation stresses may be written as

i" = YIU,+Y2w:+Kjt.

i'HI = YIU/'+Y2 w:+ Kjt,

i:: = Y411':+K).•

where

(64)

(65)

(66)

t The authors understand that the result (60) has also been obtained by Beatty and Hayes and will appear
shortly in the JOl/mal of Elasticity.
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"I = KfJ. 1i. - I W:.

Ki.:' . ,
., - '/I-'W
(6 - -(.-- -"f'"' :.

1.+11)
(67)

and Kis the perturbation in the scalar multiplier K. We see at once from (62), (67) the vital
relation

(68)

Equ'ltion (68) enables us to cast the boundary conditions in the same form as before,

(69)

The equations of motion (19) are unchanged and we may proceed to a solution as before,
We augment (23), (27) with the expansions

<

i; = k'i L K,,(kr):'''exp[i(wt-k:)],
n~O

'r

K" = L ,,:~"l(ka):''''.
",~n

(70)

WilhoUI loss of generality we may take "u = I. We lind

L
all = 2'

(Ill Lt,
JIK = '}', - "..

II • 2'

I.:'
dill 1 =-

16 '

and afler the next round of calculation

By writing II ="" II' = I:: in (65), (66) we lind in this case

(71)

(72)

L 1..
E* =" -L", + _._!..-!.

(~ i. 2' (73)

Hence from (7\) -(73) the 'Ipproximate dispersion equation can be written in the form (35),
ex.lclly as before.

It was observed in Bell (1983) that the experimental results there could be accounted
for by supposing lhal

(74)

Actually Bell (1983) contains a misprint but it is clear that (74) was intended. Accordingly
we illustrate our analysis above by supposing first that W depends upon J:. only and then
specializing to the form (74).

With IV = ~V(Jl only), we find from (67), (73) or from
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I
I
I
I

I

: --- Th. lin•• _ 1/3

I
I
I
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3.0

2.5

2.0

1.5

1.0

0.5

o 0.3

',/ .. -1.0

',/a-1.5

',I a - 2.0

0.6 0.9 1.2 1.5 1.8

Fi~. II. The vdol"ity dia~ralll for IOI1~itudinal vihrations in a l"ylinder of material obeying the Bdl
l"onslrain!. The l"urvcs show the stamlardi.led vdo..:ity "j," plotted against the stret..:h parameter ,;

for spccilicd valucs of the parameter r ,/7..

that

If W is given by (74), then we write

.... = J +1:, It = 1-t;/2

and suppose /irst thac I: > O. Then

(75)

(76)

(77)

3(I+c) [
E*=, (2-1:)r, +CXI:

4(1-1:/2)
I !( 31:)J1+

2
. (78)

As I: -+ 0, E* -+ + ":r~, so in this case for the comparison velocity we define

and then from (35), (73), (7X)

(c)~, ,[(I-f.)rl f. I.!Jf: ~:: (I +f.) ---;;.---- +--2- .

(79)

(80)

In Fig. 6 we show how (,R) varies with f. (> 0) for various values oft,/a.. In particular
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we see that when r, vanishes (ele) has a minimum at c = ~ and then c'co = 1.52....
Indeed, for all values of r I' c = ~ furnishes a stationary point and this is a minimum provided
that r 1/7. < 1.30.... The case c < 0 may be analysed similarly.

5. SUMMARY

We have shown that in the lowest mode the longitudinal vibrations of a long circular
cylinder under steady normal and axial tractions r I, r J are governed by the approximate
dispersion equation

P(;)C a*~ ,
k C ~ (E*-2a*r)- T(E*-2a*r-r)(ka)-, (kasmall),

where wand k are the angular frequency and wavenumber, p and a the density and radius
of the cylinder after the steady tractions have been imposed, and r = !,1 - r ,. The quantities
E*, a* are expressed in terms of the strain-energy density function Wand a procedure is
suggested for their measurement by experiment. When the steady tractions arc absent. E*
and a* become Eo and a, the Young's modulus and Poisson's ratio for the material. The
analysis is valid for cylinders composed of incompressible material or of a compressible
material free from all internal constraint or of material obeying Bell's constraint.
Expressions arc also given for the displacement and stress fields. The results may find
application in st,lbility studies for a stressed cylinder and in the investigation of the propa­
gation of ultrasonic pulses.

It is proposed to discuss the Ikxural vibrations of a loaded cylinder in a further
communication.
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