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Abstract—The dispersion equation governing small-amplitude longitudinal vibrations, in their
lowest mode, of an elastic cylinder upon which there are imposed large steady axial and normai
tractions, is given in an approximate form valid for wavelengths large compared to the cylinder
radius. The displacement and stress fields are also obtained. Three cases are considered in which
the isotropic hyperelastic material of the cylinder is (i) incompressible, (ii) compressible and free
from internal constraint, (iii) compressible but subject to Bell's constraint. The dispersion equation
1s illustrated graphically for certain specific strain-energy density functions, including those for a
generalized Blatz-Ko material, a Mooney-Rivlin material and a model for biological tissue.

l. INTRODUCTION

In the course of their classical investigations into the vibrations of an elastic cylinder of
circular cross-section Pochhammer (1876) and later, but independently, Chree (1886) [see
also Love (1944)], obtained the approximate dispersion equation

pm: | {rj(ka) 2
k 2

o =E —— +0(ka)"], (M

governing the lowest mode of longitudinal vibration. Here w, k are the angular frequency
and wave-number, and E, g, p, a the Young’s modulus, Poisson’s ratio, density and radius
of the cylinder.

Our aim in this paper is to employ the methods of modern non-lincar elasticity theory
in order to derive the corresponding dispersion relation for small-amplitude waves in a
cylinder subjected to large steady axial and normal tractions. The result may find application
in the stability theory of cylinders under stress and in the propagation of ultrasonic waves
along stressed bars. It turns out that for any homogeneous isotropic hyperelastic material
it is possible to define quantities £*, o* in terms of the strain-energy density function and
the imposed tractions so that the derived dispersion equation is of broadly similar, but not
identical, form to (1). Further, these quantities E*, a* are simply related to the behaviour
of the cylinder under incremental uniaxial static tension (or compression). This makes for
case of calculation on the one hand and of experimental verification on the other. Three
cases are examined : first, the case in which the elastic material is compressible and free
from any internal constraint, secondly the case of incompressible material and finally the
very interesting situation in which the material is subject to the Bell constraint {see Bell
(1983)]. The analysis in the last case may have important implications for the behaviour of
the cylinder material as it approaches the plastic regime. Corresponding to these three cases,
the results are illustrated for material obeying a particular generalization of the Blatz-Ko
strain-energy function whose properties are discussed by the authors elsewhere [see Willson
and Myers (1988)]. for biological tissue [see Fung (1967)] and for Mooney—Rivlin material,
where we recover a result derived by Suhubi (1965) {see also Eringen and Suhubi (1974)],
and finally for material with a strain-energy function proposed by Ericksen to account for
the experimental results of Bell (1983).

t Present address : GPT Limited. New Century Park, PO Box 53, Coventry CV3 {HJ, UK.
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2. COMPRESSIBLE MATERIAL

For a full account of the theory of non-linear elasticity the reader is referred to Eringen
and Suhubi (1974) and for a recent survey article to Beatty (1987). In summary, we consider
first the undeformed state of an isotropic, homogeneous, hyperelastic body and suppose
that in this reference state the typical material particle is at a point with co-ordinates
(X,. X, X;). When the body is subsequently deformed the co-ordinates of the site occupied
by that particle at time ¢ are (x,,x., x:). where x, = x(X,..Y.. X;.1). and Cartesian co-
ordinates are used throughout. From these functions x, we construct the deformation
gradient tensor F by the rule

ex,

K= = i, K=1223). 2
Fix R (LK=123) )

By the polar decomposition theorem F admits a unique decomposition of the form
F = VR. 3
where V is a positive symmetric tensor and R is a proper orthogonal tensor. Thus
vVi=V, RR"=1L (4
where I is the identity and T denotes transpose. The eigenvalues of V arc the principal

stretches 4, 4, and 4,. It is usually more convenient to work with A7 rather than 4, so we
construct the Cauchy deformation tensor B and its inverse B ' by the rule

~

B=FF =V- (3)
The invariants of B are denoted by 14, 1., 1, where
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For material that is compressible and free from internal constraint we denote the strain-
energy per unit undeformed volume by W and then, since the principal axes of stress are
coincident with those of stretch, clearly

dW=t;).:).;d}.,+r:i;l,dl;+t;2;}.3di3, (7)

where the 1, are the principal stresses, for all d4,, d4., d2; without restriction. So

A oW
=TT oo %)
Lylaky VA,
Then if ¥ is regarded as a function of [, /5, /; the stress tensor 1 is given by
T =207 VW B+ (Wil + W)= W,[,B '], )

where W, = ¢W/d,.

We consider now an clastic cylinder, infinite in length and circular in cross-section.
Upon this cylinder we impose steady normal and axial tractions, denoting their values in
the deformed state by t, and 1, respectively. The consequent deformation, which we call
the primary deformation, is given by

xy =uX,, xy=upX: x;y=7iX; (4 pconstants), (10)

and so from (9), (10),
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T, =2 W+ (Wl + Wil — ™ W),
f}=213‘”2[1:"/1+(W2[:+W313)—’/.»_2W:[3]. (ll)

in which the derivatives of W are evaluated at the point
I = A4+20°, I, = p2QA%+p?), Iy =i’ (12)

When the strain-energy density function W is specified. (11) determine the values of 4, u
for given t,. 1.

We wish now to consider small-amplitude longitudinal vibrations of the cylinder and
accordingly set

Xqu XU .
X = pX + Tl Y= pkak == Xy = AKotw, (13)

where « and w depend upon r, -, f, with
r=pXi+XH" =X, (14)

The vibrations of the cylinder are regarded as perturbations of the deformed state (10) and
in the subscquent calculation we retain only the first powers of u. w and their derivatives.
From (2). (5). (9). (13) we calculate the stress perturbations 7,. The non-vanishing 7,
comprise the components <,,. Tw. T.. and 7,. (where the suffixes r, 0, = indicate radial,
azimuthal and axial directions). We first introduce the notation, which is closely similar to
that used in Eringen and Suhubi (1974),

©=2Vw, @&=2,"W,

W= 21‘-1/2"/2’
A=2I.\ l/2‘4/“, B=21| l/:Wz:, C=2

I W,

D=21"W,, E=2,"W,, F=2;""W,, (15)
and then find
3
frr = ﬂlul+ [“:—“ +ﬂ2”’:s

. u
Toa = fott,+ g;_l" +ﬂ2"’:-

i, = /;,(,,,+ g)+/f4w...

i, = ﬂo“: + /;Swrv (16)

Bi= A+ PO +O+ (A + '),

fr=A— )P0+ O+ (A —p)¥,

Bs=A7,—AD+0,

Bi= A+ 0+0 422747,

Bs = 1@+ 2W), B = IO+ W),

Br=A0,— 1O+ + (=A%), (17

with
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Ay = 20 A+ G+ B CH 20 (A + 0D + 247 E+ 2(A + uh)F].
Ay = 250 A+ 260G+ 1) B+ 2 u C+ (37 + @)D+ p (A7 + ) E+ (A7 + 3u7)F,
A, = 2[4+ 4 B+ C+3u°D + 2 E+44°F).

Eringen and Suhubi (1974) consider only the case in which 1, vanishes. In this special case
our expressions (16), (17) agree with theirs. From (11), (17) we have the important results

B:—B:= Be—Bs = t;—ti(= t.5ay). (18)
In the absence of body forces. the equations of motion (to the present approximation) are

. N A (frr - fm!)
pu=1t,, + T,..+ —r*— ’

rr‘ a
i =t = (19

where p is the density in the deformed state, so that
pAud = p,. (20)

in which p, denotes the density in the reference state.
We consider only the case in which the traction upon the perturbed curved surface is
always normal and always of magnitude 7, so that the boundary condition

TN, =T, 21)

where the unit normal vector n = (1,0, —uw.), reduces to 7, = 0, 7,. = tu.onr = a. So
from (16), (18), (19) it is readily seen that the boundary condition on the curved surface
r = « may be written as

£, =0, w.+w,=0 onr=ua. (22)

Notice that ¢ has been used to denote the cylinder radius after the primary deformation
has been made; in the reference state the cylinder radius isay = u ™ 'a.

It is possible to solve the problem summarized by (16), (19), (22) now and in particular
to obtain the dispersion equation, exactly in terms of Bessel functions but the result is very
complicated and extremely difficult to survey. In many applications, however, k« is small
compared to unity and we exploit this fact now in order to obtain an approximate solution.
Accordingly we expand the radial part of the displacement in ascending powers of Ar and
assume that the transverse and axial components of displacement in the lowest mode
contain only odd and even powers of r respectively, as in Pochhammer’s original inves-
tigation (1876), and so set

U

7 i a,(kr)”* ' exp [i(wt —kz)],

LERY

W

—i% Zn: bo(kr)® exp [i{wt — k)], (23)

n=0

where & is an arbitrary constant and the a,, b, are constants whose values are yet to be
determined. we find by equating cocfficients of powers of r in (19) that
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(X=Boa,+4(n+ D)(n+2)B,2,s 1 —2(n+ 1)(B2+ B5)basy =0,
(X—=B)b,+2(n+ (B3 +Be)a. +4(n+1)*Bsb,., = 0, (29)

formn=0,1,2,..., where
X = pw?/k>. (25)

The series (23) are clearly convergent for all values of the parameters, Also from (16), (22),
(23)

S [a,+2(n+ )by, J(ka)* =0,

n=0
Zo [(2n+ DB, +B1)a, —B1b,)(ka)™ = 0. (26)

We now write down the asymptotic developments (for small ka) of a,, b,. X thus

a, = 3, d"(ka)™™, b, = Z B ka)™, X =Y X" (ka)™. 2n

m=10 m=0 mw i}

The substitution of (27) into (24), (26) and the equating of coefficients of powers of (ka)
then yiclds sufficient cquations to enable us to find all the derived coefficients in (23), (27).
Without loss of generality we may take

pon = Bt B)

b=y hm =0 for m> 0. (28)

Then we soon find

o __ U m . __"_,2_@.___ — E
a(n)__ l. b(l)_ é. X”—ﬁ.‘ (/}l+/}7)’ a(lo)___ 8’
b‘so) = [(I;l +/‘7)(ﬂ2+ﬂ5)r'—2ﬁ§] a“) = [(3ﬂl +ﬂ7)r_4p2]
: 32848, + 1) C 8B +8)
B = (BB +B2)Bs+ (B +B1)B:)T —28,(B,+284)] (29)
: 16fs(B,+ ) '
where
_ [(Bi+B:)(Bs + B —283]
r= B(B,+5B7) ) ©0)
and so, with the aid of (18),
w_ __—h [ _ 2 ._] 31
STy S L ey i | Gh

Equations (23), (27). (30) give a good approximation, valid for small values of (ka), for
the displacement field and hence the stress distribution. From egns (25), (27), (29), (31},
we derive the approximate form of the dispersion equation
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pot -iﬁi_]___@% [ 2 “]_ : .
k- ~ [ﬂJ B1+B7 2(6|+B7): B ﬂ1+ﬂ7 T |[(ka)-. (32)

For this result we now seek a simple interpretation and representation. Consider the elastic
body after the primary deformation has been attained. Suppose that by a small increase 7.
in the axial traction, but leaving the normal traction unaitered. we impose a further, but
small, deformation so that the total deformation is now given by

Xy = pX 4nx,, X =uX,+nxa, x3 = AX +ex;,

where 5, g are small constants. The stress increments are still governed by (16) with u = nr,
w = gz. We introduce quantities £*. ¢* by the relations

f..=E*:, o*= —nle 33)
We call E*, ¢* respectively the modified Young's modulus and the modified Poisson’s

ratio ; they will depend upon A, yand W.
From (16), (33) we see at once that

28,1, i
E*=f,— e g% =2 34
Bs B+ 4 Bi+5, (34)
so from (18) and (34), eqn (32) can be written as
pm: *: . s
e x (E*—20%t)— R (E*=20%r—t)(ka)". {35)

Now £*, o* are quantitics which may be readily and directly measured in an experiment
in which the primary deformation is perturbed by a small incremental uniaxial tension. So
(35) expresses the approximate form of the dispersion relation in terms of measurable
quantitics.

When the steady tractions are absent, £*, ¢* become the usual Young's modulus £
and Poisson’s ratio g so in this case (35) becomes

ﬂ:‘f“ x E[l - g,,;(ka)z]' (ka < 1), ©8)

a result first given by Pochhammer (1876).

In Fig. | we compare the result (36) with the results given by the exact dispersion
relation, for ¢ = 0.1, 0.4. The graph of (c/c,), where ¢ = w/k and ¢, = (E/p,) "2, is plotted
against (ka). We see that (36) affords a good approximation over the range 0 € ka < 1/2.
It is reasonable to assume that (35) is a good approximation over the same range, at least
for moderate values of 7.

When there is just an axial steady traction (so that the curved surface of the cylinder
is altogether free from applied traction) the values of £* o* can be found as follows.
Suppose that when the cylinder has axial stretch 4, the axial principal stretch is ©(4) and
the transverse stretch is u(4). Then from (33)

dr Adp
A Rl RS Sl
£ it ° wdi

(37
When both axial and normal steady tractions are present, however, it is gencrally necessary
to use (17}, (34) and the specific form of W in order to calculate the values of £*, o* before
comparing with experimental results.
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clc,

Fig. 1. The velocity diagram for longitudinal vibrations in an unstrained cylinder (Poisson’s ratio

a = 0.1, 0.4). The curves show how the standardized velocity ¢/c, varies with standardized wave-

number ka. The curves marked (36) are derived from the approximation given by cyn (36);
the companion curves are derived by numerical computation of the exact dispersion equation.

In order to illustrate these results we consider a generalized Blatz-Ko material [see
Blatz and Ko (1962)], for which the strain-energy density function is

3 b LY _'l
W= ﬁl:).,,lzi.,-%g(l.'+l{'+l,‘-)+ 9?3,,)

(/'.f+}.§+).§)]. (38)
where ji,n are constants. The general properties of this material have been examined in
detail by the authors [sce Willson and Myers (1988) and Myers (1987)). For the case of
axial steady traction alone it is found from (35), with just the leading term retained, that
the velocity of longitudinal waves in the lowest mode is given by

\2 -2 —Nar=1gV2122 _1y-32
(_c_)=[3na +(n=1)A2=1n"2 120 +n=1) ] (39)

Co 4n—1-—2n)""

where ¢ = w/k = phase velocity of wave, ¢q = (Ey/po)"? = phasc velocity in undeformed
state.

In Fig. 2 we show how (c/cy) varies with 4 for various selected values of 7. We note
that for n < 1.059 (approximately) there is a range of values of 4 in which (¢/cg)* is negative
so that very long sinusoidal waves belonging to the lowest mode cannot be propagated
along the cylinder.

When both axial and normal tractions are imposed the result corresponding to (39) is
too complicated to give here but in the special case n = 1 [this model has been used in Blatz
and Ko (1962) and Ko (1963) to describe the behaviour of polyurethane rubber] we find
the result

SAS 29:24-6
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Fig. 2. The velocity diagram for longitudinal vibrations of long wavelength in a cylinder of gener-
alized Blatz - Ko material under primary axial traction. The curves show the stundardized velocity
cfeq plotted against primary axial stretch & for various values of the model parameter n.

eY 54T, —6T,
(E}}) T SU=T) (- T (40

where T, = t,/g4, T, = t,/i. Figure 3 shows how (c¢/c,) varics with T for selected values
of T,.

3. INCOMPRESSIBLE MATERIALS

An incompressible medium is an example of a material subject to an internal constraint
and we now consider the modifications to the preceding analysis made necessary by this
requirement. So far as possible we retain the earlier notation.

First, it 1s well known that for incompressible materials

T=2W B-2W,B""'—pl,

where p is a Lagrange multiplier representing the scalar pressure. Here W depends upon /|
and [, only as 7, = . Since the steady normal traction 7, and axial traction tv; may be
regarded as a hydrostatic (isotropic) pressure —t, together with an axial traction 7;—1,
and since the hydrostatic pressure can be absorbed into the —pl term, it follows that for
incompressible materials it is sufficient to consider only the case in which there is just an
axial traction t (= 1,—1,).

Secondly, the incompressibility condition requires directly that I, = | always, so in the
primary deformation
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Fig. 3. The velocity diagram for longitudinal vibrations of long wavelength in a cylinder of Blatz
Ko material (n = 1) under primary normal and axial tractions (in standardized form T, T,
respectively).

At =1

and in the perturbed deformation
u
u + ; +w,=0.

In place of (11)
T = (A2 =)@+ p*¥)
and for the stress-perturbations [with the aid of (42))]

ﬁl“

f,,= —ﬁ+ﬂ.u,+ﬁ:w:. f(m= —ﬁ+~7+ﬂ3w:,

T. = —[5+/LW:, 1, = ﬁo“:'*'/;s"'n
where p is the scalar pressure perturbation and
B =220 +222°Y,
B2 =207 —p*) WP A= A2p' B+ (u* = A2u?) F),
fo =220+ 2u" W +2(27 = p?) [ A= p® B+ (A%u® — p*) F),
fs = (@+p*¥). B =22(@+p2Y).

3161

(41)

(42)

(43)

(44)

(45)
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We note that
Kh_gi =T (46)

so that the boundary conditions may still be written in the form (22). The calculation of
the deformation and the dispersion equation can be made in the same way as in Section 2.
Equation (19) stands. and we augment (23). (27) with the expansions

p= ki Z n,(kr) " exp [i(wt —k2)]. (47)

n=0

and

= Y nm(ka)™. (48)

=1

We omit the details of the calculation and give only the results. We may take a, = | and
then

bp =2, my' = /?I _2/7:» /,1Iln = = g
i
a(lm [ ‘&‘ X“" - /‘{.‘+ /"l —'/‘{1“1’- (49)

and then

=2 =21 X fo4 20 4 f,
! - N - .

o __
" 2 b= 327,
I I h(w“)
/(l)= _2/(’0)' (H _ -,
T e T N T e T o
3 ,
AR (R L ] (50)

The definitions of £*, ¢* can be retained but it is readily seen that for incompressible
materials o* = {always. The approximate form of the dispersion equation becomes

I 2 E*""z l
h,:‘c? x (E*=1)— Sﬂgﬁ_ﬂ (ka)*. (51)

with

E*-‘—'ﬂ_;‘f"/_};' —/}.:. (52)

1

so that in terms of I we have

E*—t= (G4 220+ 3 W+ 2047 = 13) (A + 1* B+ 213 F).
E* =2t =310+ 13 (4 =AW+ 2037 — 1) (A + 10 B+ 2% F). (53)

For illustrative purposes we retain just the leading term in (51) so that
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<" )l e (54)
Co E, .
For Mooney-Rivlin material

W=x(l,—3)+p(I.-3). (2. fconstants),

so that (54) becomes

<£): L AA 25 + 3 Gt = 1)
o) - 3a+p T

in agreement with Suhubi (1965) [see also Eringen and Suhubi (1974)]. This result is
illustrated in Fig. 4 for various values of f§/x.

In Fig. 5 we show how (c¢/¢,) varies with axial stretch 4 for a model often used [see
Fung (1967) and Beatty (1987)] to describe the behaviour of biological tissue

=2 et -y -1, (55)

where i, 7 are positive constants ; in this case (51), (52). (54) yield

Bl/a=0.0

a/a-o.S\

Bla=1.0

cle,

\ﬂ/a-z.o

T

Bla=50
] { ]
0 2 3 4

Fig. 4. The velocity diagram for longitudinal vibrations of a cylinder of Mooney-Rivlin material
under primary traction. The curves show the standardized velocity /¢, of long waves plotted against
the primary axial streteh 4 for various values of the ratio fifz of the mode! parameters.
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Fig. 5. The velocity diagram for longitudinal vibrations of a cylinder of biological tissue under
primary traction. The curves show the standardized velocity ¢/c, of long witves plotted against the
primary axial stretch 4 for various values of the model pariameter 3.

( ‘) 2 UAT424 "+ 29(A0 =22+ 4 Y]exp [y(A1 424 =3)). (56)

Co

4. MATERIALS OBEYING THE BELL CONSTRAINT

In this section we consider the vibrations of a cylinder composed of clastic material
subject to the Bell constraint [see Bell (1983)], that is,

i+ i, =3 (57)
Then with the same assumptions as before
d’V = T.;.z;._\ d;.| +‘[1/’.3;,| d;.z +f3;.|/..1 d}.J

forall di,, d4,, d4, satisfying dA, +dAi,+d4; = 0. Hence
T, = —— —— + KA, (58)

where K is a Lagrange multiplier. So, for the Bell constraint, T acquires an additional term
KV, a result given in Bell (1983) but derived by a different method. It is convenient to work
in terms of the invariants of V,
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jl =}.|+;.'_v+/':.3 =3, Jz=/.sz)~3+;s3}.|+/:|}»2, J3=ﬁ..|}.2/..3, (59)
and then we have at once, with W = W(J,,J,), of course,

w w
r=a—l+KV L e

A AT 0

where K is the Lagrange multiplier.t It plays a rdle analogous to the scalar pressure for
incompressible materials, and must vary in space and time in just such a way as will ensure
that J, = 3 always.

With the cylinder placed under normal traction t, and axial traction t;, as before, we
consider the primary deformation (10) so that

Ad2u=3, Jy=2pu+pd, Jy=2pd (61)
and
T, =Wi—i""Wy+Ku, ty=W,—duW,+Ki (62)
since in the primary deformation
V = diag {j. 1. 4}.
Throughout this section, suftixes attached to W indicate partial differentiation with respect
to J,, J;.

Now consider the perturbed state produced by the longitudinal vibration of the cylin-
der, the total deformation being given by (13), (14). It is casy to show that now

u(l4+p,) 0 é
Y = 0 u(l +ujr) 0 , (63)
0 0 A(l+w.)
where
C_ (Au+piw)
0= ———""— (64)
(A+p)
Also the requirement J, = 3 yields
u
u,+ - +Lw, =0, (65)
where L = i/p.
A short calculation now reveals that the perturbation stresses may be written as
frr = )’|ll, +YZ“’: + K‘#’
T = }’1“/’+Y2W:+kﬂ»
i, =y + KA
T,. = Yold: +7sW,, (66)

where

t The authors understand that the result (60) has also been obtained by Beatty and Hayes and will appear
shortly in the Journal of Elasticity.



366 A. J. WiLtson and P. J. Mvyers
o= Ku~2i""15,
r= T YW (= AG— )Wy — W+ AW ).
i = KA— (A + 2700 DWW+ (=[G = p YWy = 2 u W+ 2u W],
Ku® Ki?

= M =, 67
- - e G+n) H 2 (67)

and K is the perturbation in the scalar multiplier K. We see at once from (62), (67) the vital
relation

Te—vs=T—0(=1). (68)
Equation (68) enables us to cast the boundary conditions in the same form as before,
f,=0, u.+w,=0onr=a 69)

The equations of motion (19) are unchanged and we may proceed to a solution as before.
We augment (23). (27) with the expansions

1. .

K=ki¥ wkn)"explifwi—kz)]), k, = 3 k" (ka)™. (70)

=i} (et

Without loss of gencrality we may take by = |. We find

L s
o = 5. Ry =y~ ; L
L L2
W= (M - :
b PR 6"
LY
YO =Lk = - L (70

and after the next round of calculation

Tpartoy _
Y [:',QXMSv#E} . (72)

By writing u = nr, w = £z in (65), (66) we find in this case

T L
E*=yi—Ly+ =52, o =1, (73

Hence from (71) -(73) the approximate dispersion equation can be written in the form (35),
exactly as before.

It was obscerved in Bell (1983) that the experimental results there could be accounted
for by supposing that

W= (4/3)"*2(3~-J )", (a > 0constant). (74)

Actually Bell (1983) contains a misprint but it is clear that (74) was intended. Accordingly
we illustrate our analysis above by supposing first that W depends upon J, only and then
specializing to the form (74).

With IV = IW(J, only)., we find from (67), (73) or from
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I p v

. .0ty .
E* = Py (t,.4)

A -
* = 2 (Bpe, — QA+ )W+ 2u(p— 2)° Was).

If W is given by (74), then we write

i=lte, pu=1-¢2

and suppose first that ¢ > 0. Then

~ 3(l+L) - i 3“
E —4(]_”/2)\[(2 £)T) +an (|+ 2)]

As e~ 0, £'* - + =, so in this case for the comparison velocity we define

¢ =alp,

and then from (35). (73), (7%)

(i) = i +a)3[(l:_’"'_)_t,.'. + r;;_)‘_.:,.
¢ o 2

3167

(75

(76)

an

(78)

@)

(80)

In Fig. 6 we show how (¢/¢) varies with & (> 0) for various values of t,/«. In particular
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we see that when r, vanishes (¢/¢) has a minimum at ¢ = | and then ¢'¢y = 1.52....

Indeed, for all values of t,. £ = !} furnishes a stationary point and this is a minimum provided
that t,/x < 1.30.... The case ¢ < 0 may be analysed similarly.

5. SUMMARY

We have shown that in the lowest mode the longitudinal vibrations of a long circular
cylinder under steady normal and axial tractions z,, t; are governed by the approximate
dispersion equation

- »2
pl\u X (E*—ZO’*T)—GT(E*-ZO'*I—T)(/\'(I):. (Aa small).

where w and & are the angular frequency and wavenumber, p and « the density and radius
of the cylinder after the steady tractions have been imposed, and t = t;—r{. The quantities
E*.o* are expressed in terms of the strain-energy density function W and a procedure is
suggested for their measurement by experiment. When the steady tractions are absent, E*
and o* become E, and o, the Young’s modulus and Poisson’s ratio for the material. The
analysis is valid for cylinders composed of incompressible material or of a compressible
material free from all internal constraint or of material obeying Bell's constraint.
Expressions are also given for the displacement and stress ficlds. The results may find
application in stability studics for a stressed cylinder and in the investigation of the propa-
gation of ultrasonic pulscs.

It is proposed to discuss the flexural vibrations of a loaded cylinder in a further
communication.
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